Advance in Thermal Energy Storage Shows Promise

Breakthrough could play major role in decarbonizing buildings

By HFT Editorial Staff


Lawrence Berkeley National Laboratory researchers recently reported a breakthrough in phase-change materials, which will improve the affordability of thermal energy storage. Phase-change materials can be added inside walls and automatically keep healthcare facilities and other institutional or commercial buildings cool or warm, depending on the ambient temperature.

Could a tank of ice or hot water be a battery? Yes. If a battery is a device for storing energy, then storing hot or cold water to power a building’s heating or air-conditioning system is a different type of energy storage. Known as thermal energy storage, the technology has been around for a long time but has often been overlooked. Now scientists at Berkeley Lab are making a concerted push to take thermal energy storage to the next level.

To overcome some of the limitations of traditional water-based thermal energy storage, Berkeley Lab scientists are looking at developing next-generation materials and systems to be used as a heating or cooling medium. They are also creating a framework to analyze costs, as well as a tool to compare cost savings. In a series of papers published this year, Berkeley Lab researchers have reported important advances in each of these areas.

“It is very challenging to decarbonize buildings, particularly for heating,” says Ravi Prasher, Berkeley Lab’s associate lab director for energy technologies. “But if you store energy in the form of the end use, which is heat, rather than in the form of the energy supply, which is electricity, the cost savings could be very compelling. And now with the framework we’ve developed, we’ll be able to weigh the costs of thermal energy storage versus electrical storage, such as with lithium batteries, which has been impossible until now.”

In the United States, buildings account for 40 percent of total energy consumption. Of that, almost one-half goes toward thermal loads, which includes space heating and cooling as well as water heating and refrigeration. In other words, one-fifth of all energy produced goes towards thermal loads in buildings. By 2050, the demand on the electricity grid from thermal loads is expected to increase dramatically as natural gas is phased out and heating is increasingly powered by electricity.

“If we use thermal energy storage, in which the raw materials are more abundant to meet the demand for thermal loads, this will relax some of the demand for electrochemical storage and free up batteries to be used where thermal energy storage cannot be used,” says Sumanjeet Kaur, lead of Berkeley Lab’s thermal energy group.



November 29, 2021


Topic Area: Energy and Power


Recent Posts

All Eyes on Gen Z as They Enter the Workforce

As the labor gap widens in the facilities industry, not many managers trust Gen Z to fill that hole.


Cleveland Clinic Starts Fundraising Effort for New Hospital in West Palm Beach

Plans for the new hospital include approximately 150 inpatient beds, an emergency department, a medical office building and an ambulatory surgery center.


Cultivating a Workforce in the Face of Skilled Trade Shortages

Facilities managers must make concerted efforts to attract skilled trade workers to their facilities and retain them long term.


Prime Healthcare Acquires 8 Ascension Hospitals in Illinois

They also acquired a number of other facilities in this acquisition.


Charging Ahead: Incentives Driving EV Charging in Healthcare Facilities

Manufacturers discuss how incentives impact the decision-making process.


 
 


FREE Newsletter Signup Form

News & Updates | Webcast Alerts
Building Technologies | & More!

 
 
 


All fields are required. This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.